Bernardo Biesseck
2016-09-12 15:01:06 UTC
I'm using Keras library but my problem relies in Theano functions, that's
because I posted this question here. I need to compute partial derivatives
separately because later one of them will be calculated numerically. For
while I'm just trying to compute the same derivatives as Theano does in a
simple MLP. Partial derivatives of the last layer in a common MLP are
calculated as
dL/dW = dL/d_ypred * d_ypred/d_netoutput * d_netoutput/d_W,
where
L = Loss function = sqrt(sum(square(y_true - y_pred))) (euclidean distance)
y_pred = sigmoid(net_output)
net_output = f(X,W) + b.
I modified mnist_siamese_graph.py
<https://github.com/fchollet/keras/blob/master/examples/mnist_siamese_graph.py>
program to a simple Object Oriented version (to get access to some
variables), as follows at the end of this post. Well, if I compute
gradients as
grads = {}
for wrt in trainable_weights:
grads[wrt] = T.grad(total_loss, wrt)
and pass "grads" dictionary as argument to "known_grads" parameter in
"theano.tensor.grad()" method the entire process runs exactly as original
version, but I can't compute each partial derivative separated. What I'm
trying to do is
def compute_gradients2(self, total_loss, trainable_weights):
#total_loss = Elemwise{mul,no_inplace}.0
#trainable_weights = [dense_1_W, dense_1_b, dense_2_W, dense_2_b, dense_3_W, dense_3_b]
grads = {}
dLoss_dypred = T.grad(total_loss, self.y_pred)
for wrt in trainable_weights:
dypred_dnetoutput1 = T.grad(self.y_pred, self.processed_a)
dypred_dnetoutput2 = T.grad(self.y_pred, self.processed_b)
dnetoutput1_dW = T.grad(self.processed_a.output, wrt)
dnetoutput2_dW = T.grad(self.processed_b.output, wrt)
grads[wrt] = (dLoss_dypred * dypred_dnetoutput1 * dnetoutput1_dW) + (dLoss_dypred * dypred_dnetoutput2 * dnetoutput2_dW)
return grads
The error is in line
dypred_dnetoutput1 = T.grad(self.y_pred, self.processed_a)
*TypeError: cost must be a scalar.*
because
self.y_pred.ndim = 2
My complete source-code is bellow:
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
import random
from keras.datasets import mnist
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input, Lambda
from keras.optimizers import SGD, RMSprop
from keras import backend as K
from theano import tensor as T
from keras.engine.training import *
class MNIST_SIAMESE(object):
def __init__(self):
self.seq = None
self.input_a = None
self.input_b = None
self.processed_a = None
self.processed_b = None
self.distance = None
self.model = None
self.rms = None
def setModel(self, input_dim):
# Base network to be shared (eq. to feature extraction).
self.seq = Sequential()
self.seq.add(Dense(128, input_shape=(input_dim,), activation='relu'))
self.seq.add(Dropout(0.1))
self.seq.add(Dense(128, activation='relu'))
self.seq.add(Dropout(0.1))
self.seq.add(Dense(128, activation='relu'))
self.input_a = Input(shape=(input_dim,))
self.input_b = Input(shape=(input_dim,))
# because we re-use the same instance `base_network`,
# the weights of the network
# will be shared across the two branches
self.processed_a = self.seq(self.input_a)
self.processed_b = self.seq(self.input_b)
self.distance = Lambda(self.euclidean_distance, output_shape=self.eucl_dist_output_shape)([self.processed_a, self.processed_b])
self.model = Model(input=[self.input_a, self.input_b], output=self.distance)
# train
self.rms = RMSprop()
self.model.compile(loss=self.contrastive_loss, optimizer=self.rms)
def compute_gradients1(self, total_loss, variables):
#loss = Elemwise{mul,no_inplace}.0
#variables = [dense_1_W, dense_1_b, dense_2_W, dense_2_b, dense_3_W, dense_3_b]
grads = {}
for wrt in variables:
grads[wrt] = T.grad(total_loss, wrt)
return grads
def compute_gradients2(self, total_loss, variables):
#loss = Elemwise{mul,no_inplace}.0
#variables = [dense_1_W, dense_1_b, dense_2_W, dense_2_b, dense_3_W, dense_3_b]
grads = {}
dLoss_dypred = T.grad(total_loss, self.y_pred)
for wrt in variables:
dypred_dnetoutput1 = T.grad(self.y_pred, self.processed_a)
dypred_dnetoutput2 = T.grad(self.y_pred, self.processed_b)
dnetoutput1_dW = T.grad(self.processed_a.output, wrt)
dnetoutput2_dW = T.grad(self.processed_b.output, wrt)
grads[wrt] = (dLoss_dypred * dypred_dnetoutput1 * dnetoutput1_dW) + (dLoss_dypred * dypred_dnetoutput2 * dnetoutput2_dW)
return grads
def euclidean_distance(self, vects):
x, y = vects
self.euclDist = K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True))
return self.euclDist
def eucl_dist_output_shape(self, shapes):
shape1, shape2 = shapes
return (shape1[0], 1)
def contrastive_loss(self, y_true, y_pred):
'''Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
'''
self.y_pred = y_pred
margin = 1
return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))
def train(self, train_set, val_set, batch_size, nb_epoch):
train_pairs, train_y = train_set
test_pairs, test_y = val_set
# Original
# self.model.fit([train_pairs[:, 0], train_pairs[:, 1]], train_y,
# validation_data=([test_pairs[:, 0], test_pairs[:, 1]], test_y),
# batch_size=batch_size,
# nb_epoch=nb_epoch)
print('Computing gradients...')
grads = self.compute_gradients2(self.model.total_loss, self.model.layers[2].trainable_weights)
self.model.fit_knownGrads([train_pairs[:, 0], train_pairs[:, 1]], train_y,
validation_data=([test_pairs[:, 0], test_pairs[:, 1]], test_y),
batch_size=batch_size,
nb_epoch=nb_epoch,
knownGrads=grads)
def predict(self, samples):
labels = self.model.predict([samples[:, 0], samples[:, 1]])
return labels
def create_pairs(x, digit_indices):
'''Positive and negative pair creation.
Alternates between positive and negative pairs.
'''
pairs = []
labels = []
n = min([len(digit_indices[d]) for d in range(10)]) - 1
for d in range(10):
for i in range(n):
z1, z2 = digit_indices[d][i], digit_indices[d][i+1]
pairs += [[x[z1], x[z2]]]
inc = random.randrange(1, 10)
dn = (d + inc) % 10
z1, z2 = digit_indices[d][i], digit_indices[dn][i]
pairs += [[x[z1], x[z2]]]
labels += [1, 0]
return np.array(pairs), np.array(labels)
def compute_accuracy(predictions, labels):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return labels[predictions.ravel() < 0.5].mean()
if __name__ == '__main__':
np.random.seed(1337) # for reproducibility
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
input_dim = 784
batchh_size = 128
nb_epochh = 3
# create training+test positive and negative pairs
digit_indices = [np.where(y_train == i)[0] for i in range(10)]
tr_pairs, tr_y = create_pairs(X_train, digit_indices)
trainnn_set = [tr_pairs, tr_y]
digit_indices = [np.where(y_test == i)[0] for i in range(10)]
te_pairs, te_y = create_pairs(X_test, digit_indices)
testtt_set = [te_pairs, te_y]
# network definition
base_network = MNIST_SIAMESE()
base_network.setModel(input_dim)
base_network.train(trainnn_set, testtt_set, batchh_size, nb_epochh)
# compute final accuracy on training and test sets
pred = base_network.predict(tr_pairs)
tr_acc = compute_accuracy(pred, tr_y)
pred = base_network.predict(te_pairs)
te_acc = compute_accuracy(pred, te_y)
print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
I thank any contribution!
because I posted this question here. I need to compute partial derivatives
separately because later one of them will be calculated numerically. For
while I'm just trying to compute the same derivatives as Theano does in a
simple MLP. Partial derivatives of the last layer in a common MLP are
calculated as
dL/dW = dL/d_ypred * d_ypred/d_netoutput * d_netoutput/d_W,
where
L = Loss function = sqrt(sum(square(y_true - y_pred))) (euclidean distance)
y_pred = sigmoid(net_output)
net_output = f(X,W) + b.
I modified mnist_siamese_graph.py
<https://github.com/fchollet/keras/blob/master/examples/mnist_siamese_graph.py>
program to a simple Object Oriented version (to get access to some
variables), as follows at the end of this post. Well, if I compute
gradients as
grads = {}
for wrt in trainable_weights:
grads[wrt] = T.grad(total_loss, wrt)
and pass "grads" dictionary as argument to "known_grads" parameter in
"theano.tensor.grad()" method the entire process runs exactly as original
version, but I can't compute each partial derivative separated. What I'm
trying to do is
def compute_gradients2(self, total_loss, trainable_weights):
#total_loss = Elemwise{mul,no_inplace}.0
#trainable_weights = [dense_1_W, dense_1_b, dense_2_W, dense_2_b, dense_3_W, dense_3_b]
grads = {}
dLoss_dypred = T.grad(total_loss, self.y_pred)
for wrt in trainable_weights:
dypred_dnetoutput1 = T.grad(self.y_pred, self.processed_a)
dypred_dnetoutput2 = T.grad(self.y_pred, self.processed_b)
dnetoutput1_dW = T.grad(self.processed_a.output, wrt)
dnetoutput2_dW = T.grad(self.processed_b.output, wrt)
grads[wrt] = (dLoss_dypred * dypred_dnetoutput1 * dnetoutput1_dW) + (dLoss_dypred * dypred_dnetoutput2 * dnetoutput2_dW)
return grads
The error is in line
dypred_dnetoutput1 = T.grad(self.y_pred, self.processed_a)
*TypeError: cost must be a scalar.*
because
self.y_pred.ndim = 2
My complete source-code is bellow:
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
import random
from keras.datasets import mnist
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input, Lambda
from keras.optimizers import SGD, RMSprop
from keras import backend as K
from theano import tensor as T
from keras.engine.training import *
class MNIST_SIAMESE(object):
def __init__(self):
self.seq = None
self.input_a = None
self.input_b = None
self.processed_a = None
self.processed_b = None
self.distance = None
self.model = None
self.rms = None
def setModel(self, input_dim):
# Base network to be shared (eq. to feature extraction).
self.seq = Sequential()
self.seq.add(Dense(128, input_shape=(input_dim,), activation='relu'))
self.seq.add(Dropout(0.1))
self.seq.add(Dense(128, activation='relu'))
self.seq.add(Dropout(0.1))
self.seq.add(Dense(128, activation='relu'))
self.input_a = Input(shape=(input_dim,))
self.input_b = Input(shape=(input_dim,))
# because we re-use the same instance `base_network`,
# the weights of the network
# will be shared across the two branches
self.processed_a = self.seq(self.input_a)
self.processed_b = self.seq(self.input_b)
self.distance = Lambda(self.euclidean_distance, output_shape=self.eucl_dist_output_shape)([self.processed_a, self.processed_b])
self.model = Model(input=[self.input_a, self.input_b], output=self.distance)
# train
self.rms = RMSprop()
self.model.compile(loss=self.contrastive_loss, optimizer=self.rms)
def compute_gradients1(self, total_loss, variables):
#loss = Elemwise{mul,no_inplace}.0
#variables = [dense_1_W, dense_1_b, dense_2_W, dense_2_b, dense_3_W, dense_3_b]
grads = {}
for wrt in variables:
grads[wrt] = T.grad(total_loss, wrt)
return grads
def compute_gradients2(self, total_loss, variables):
#loss = Elemwise{mul,no_inplace}.0
#variables = [dense_1_W, dense_1_b, dense_2_W, dense_2_b, dense_3_W, dense_3_b]
grads = {}
dLoss_dypred = T.grad(total_loss, self.y_pred)
for wrt in variables:
dypred_dnetoutput1 = T.grad(self.y_pred, self.processed_a)
dypred_dnetoutput2 = T.grad(self.y_pred, self.processed_b)
dnetoutput1_dW = T.grad(self.processed_a.output, wrt)
dnetoutput2_dW = T.grad(self.processed_b.output, wrt)
grads[wrt] = (dLoss_dypred * dypred_dnetoutput1 * dnetoutput1_dW) + (dLoss_dypred * dypred_dnetoutput2 * dnetoutput2_dW)
return grads
def euclidean_distance(self, vects):
x, y = vects
self.euclDist = K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True))
return self.euclDist
def eucl_dist_output_shape(self, shapes):
shape1, shape2 = shapes
return (shape1[0], 1)
def contrastive_loss(self, y_true, y_pred):
'''Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
'''
self.y_pred = y_pred
margin = 1
return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))
def train(self, train_set, val_set, batch_size, nb_epoch):
train_pairs, train_y = train_set
test_pairs, test_y = val_set
# Original
# self.model.fit([train_pairs[:, 0], train_pairs[:, 1]], train_y,
# validation_data=([test_pairs[:, 0], test_pairs[:, 1]], test_y),
# batch_size=batch_size,
# nb_epoch=nb_epoch)
print('Computing gradients...')
grads = self.compute_gradients2(self.model.total_loss, self.model.layers[2].trainable_weights)
self.model.fit_knownGrads([train_pairs[:, 0], train_pairs[:, 1]], train_y,
validation_data=([test_pairs[:, 0], test_pairs[:, 1]], test_y),
batch_size=batch_size,
nb_epoch=nb_epoch,
knownGrads=grads)
def predict(self, samples):
labels = self.model.predict([samples[:, 0], samples[:, 1]])
return labels
def create_pairs(x, digit_indices):
'''Positive and negative pair creation.
Alternates between positive and negative pairs.
'''
pairs = []
labels = []
n = min([len(digit_indices[d]) for d in range(10)]) - 1
for d in range(10):
for i in range(n):
z1, z2 = digit_indices[d][i], digit_indices[d][i+1]
pairs += [[x[z1], x[z2]]]
inc = random.randrange(1, 10)
dn = (d + inc) % 10
z1, z2 = digit_indices[d][i], digit_indices[dn][i]
pairs += [[x[z1], x[z2]]]
labels += [1, 0]
return np.array(pairs), np.array(labels)
def compute_accuracy(predictions, labels):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return labels[predictions.ravel() < 0.5].mean()
if __name__ == '__main__':
np.random.seed(1337) # for reproducibility
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
input_dim = 784
batchh_size = 128
nb_epochh = 3
# create training+test positive and negative pairs
digit_indices = [np.where(y_train == i)[0] for i in range(10)]
tr_pairs, tr_y = create_pairs(X_train, digit_indices)
trainnn_set = [tr_pairs, tr_y]
digit_indices = [np.where(y_test == i)[0] for i in range(10)]
te_pairs, te_y = create_pairs(X_test, digit_indices)
testtt_set = [te_pairs, te_y]
# network definition
base_network = MNIST_SIAMESE()
base_network.setModel(input_dim)
base_network.train(trainnn_set, testtt_set, batchh_size, nb_epochh)
# compute final accuracy on training and test sets
pred = base_network.predict(tr_pairs)
tr_acc = compute_accuracy(pred, tr_y)
pred = base_network.predict(te_pairs)
te_acc = compute_accuracy(pred, te_y)
print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
I thank any contribution!
--
---
You received this message because you are subscribed to the Google Groups "theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email to theano-users+***@googlegroups.com.
For more options, visit https://groups.google.com/d/optout.
---
You received this message because you are subscribed to the Google Groups "theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email to theano-users+***@googlegroups.com.
For more options, visit https://groups.google.com/d/optout.